A Phosphorus Credit Trading Program in an Agricultural Watershed

Juliana Corrales

G. Melodie Naja, Mahadev G. Bhat, Fernando Miralles-Wilhelm

ACES Conference Washington D.C.

December 8 - 12, 2014

Outline

- 1 Introduction
 - **2** Objective
- 3 Methodology
- 4 Results
- **5** Conclusions

1. Introduction

Uses: water supply, flood control, irrigation, and recreation.

Threats: Land use changes and excessive nutrient (phosphorus) loads.

Solution: Adoption of a phosphorus Total Maximum Daily Load (TMDL) of 140 mtons/yr.

Drainage area: 11,914 km²

1. Introduction (cont.)

1. Introduction (cont.)

Case Study: S191 Basin

- Direct discharge to Lake Okeechobee.
- 73% of the basin is composed by agricultural land, 22% natural areas, and 5% urban.
- 485 km² **4% of the Lake Okeechobee** Watershed (LOW) area.
- Annual average Total Phosphorus (TP) load of 85 mtons* 17% of TP load to the Lake.

^{*}From 2002 to 2009.

2. Objective

3. Methodology

PHASE 1

Hydrology and Water Quality Modeling

Where phosphorus sources are located? How much is their annual average load? What are the trading ratios?

PHASE 2

Economic Modeling

What is the optimal cost-effective Best Management Practices (BMPs) to be implemented at each source in order to achieve a basin-load reduction target?

PHASE 3

Phosphorus Credit Trading Scenario Analysis

What is the net cost savings of a trading program compared with a command-and-control approach?

Phase 1: Hydrology and Water Quality Modeling

Basin Outlet

WAM is a GIS based model aimed to:

- Simulate the water quantity and quality for existing conditions in a watershed.
- Develop nutrient strategies while identifying existing nutrient sources by land use and region.
- Analyze the impacts of different best management practices on the watershed.

Phase 2: Economic Modeling

Least-Cost Abatement Model:

$$Min Z = \sum_{i} \sum_{k} \sum_{j} c_{i,k,j} \times X_{i,k,j}$$

Subject to:

$$\begin{split} \sum_{i} \sum_{k} \sum_{j} L_{i,j} \times r_{k,j} \times X_{i,k,j} &\geq Target _P_{red} \\ \sum_{k} X_{i,k,j} &= 1 \quad \forall i,k,j \end{split}$$

This optimization model will be solved using the General Algebraic Modeling System (GAMS) software.

Indices:

i: zones

j: land use types

k: BMP types

Given Data:

 $C_{i,k,j}$: annual abatement cost , \$/yr $L_{i,j}$: TP load, kg/yr $r_{k,j}$: BMP TP load reduction efficiency, % $Target_P_{red}$: basin-wide minimum TP load reduction target, kg/yr

Decision Variable:

 $X_{i,k,j}$: binary variable, 1 if BMP is implemented, 0 otherwise

Best Management Practices (BMPs) for Phosphorus Reduction

BMP type I – Owner type

Non-structural

Fertilizer type

Fertilizer amount

Record keeping

BMP type II – Typical type

Structural

Fencing

Wetland restoration

BMP type III – Alternative type

Structural

Chemical treatment

Phase 3: Phosphorus Credit Trading Scenario Analysis

Step 1	Determination of the capAllocation of the cap per source
Step 2	Estimation of the costs of the command-and-control and the least-cost abatement approaches
Step 3	 Determination of the credit price Identification of the buyers and sellers of credits
Step 4	Estimation of the number and cost of the credits traded
Step 5	Estimation of net costs savings

4. Results

Phase 1: Hydrology and Water Quality Modeling

Identification of Total Phosphorus (TP) Sources in the S191 Basin

Phase 1: Hydrology and Water Quality Modeling

Trading Ratios (TR)

TR are used to equalize the TP loads at the basin outlet from trading sources located at different distance from the Lake

$$TR = \frac{(1 - Buyer's \ attenuation \ factor)}{(1 - Seller's \ attenuation \ factor)}$$

		Seller					
		zone 1	zone 2	zone 3	zone 4	zone 5	zone 6
Buyer	zone 1	1.00	1.02	1.04	1.06	1.09	1.14
	zone 2	0.98	1.00	1.02	1.04	1.07	1.11
	zone 3	0.96	0.98	1.00	1.02	1.04	1.09
	zone 4	0.94	0.96	0.98	1.00	1.02	1.07
	zone 5	0.92	0.94	0.96	0.98	1.00	1.05
	zone 6	0.88	0.90	0.92	0.94	0.96	1.00

Phase 3: Phosphorus Credit Trading Scenario Analysis (step 1)

• Trading Program Cap: TP Reduction Target

Current load (attenuated to the nearby stream):

87.9 mtons yr⁻¹

30% reduction

Target load:
61.5 mtons yr⁻¹

Individual allocation:
1.6 kg ha⁻¹ yr⁻¹

Phase 3: Phosphorus Credit Trading Scenario Analysis (step 2)

Identification of Best Management Practices per Land Use and Zone

Phase 3: Phosphorus Credit Trading Scenario Analysis (step 3)

Credit Price: Marginal Abatement Cost (MAC) Curve

Phase 3: Phosphorus Credit Trading Scenario Analysis (step 4)

Identification of Sellers and Buyers **Buyers** Dairies Ornamentals Sod Farms Zones Sellers Citrus Groves Urban Improved Pasture Zones 16 Km

Phase 3: Phosphorus Credit Trading Scenario Analysis (step 5)

• Cost of Credits Sold/ Bought per Land Use and per Zone (\$ in thousands)

Phase 3: Phosphorus Credit Trading Scenario Analysis (step 5)

Cost Savings per Land Use and per Zone (\$ in thousands)

Total cost savings:

\$ 1.3 million (27%)

5. Conclusions

- Phosphorus Credit Trading in the S191 Basin would provide 41% reduction in TP loads into Lake Okeechobee with a 27% in cost savings when compared to a command-and-control approach.
- This TP load reduction represents 10% of the total reduction needed to meet Lake Okeechobee TMDL.
- Higher TP reductions could be achieved by implementing a trading program to other sub-watersheds.

Acknowledgments

- Everglades Foundation
- Dr. Melodie Naja Chief Scientist, Everglades Foundation
- Dr. Mahadev Bhat Professor, Florida International University
- Dr. Fernando Miralles Professor, Florida International University

Thank you!

julianacorrales@gmail.com